Search results

1 – 10 of over 7000
Article
Publication date: 5 October 2021

Min Zhang, Cheng Hu, Jingwei Gao and Peng Zheng

Suspension is a significantly important component for automotive and railway vehicles. Regenerative hydraulic-electric shock absorbers (RHSA) have been proposed for the purpose of…

Abstract

Purpose

Suspension is a significantly important component for automotive and railway vehicles. Regenerative hydraulic-electric shock absorbers (RHSA) have been proposed for the purpose of attenuating vibration of vehicle suspension, and also recover kinetic energy originated from vehicle vibration that is conventionally dissipated by hydraulic dampers. To advance the technology, the paper aims to present an RHSA system for heavy-duty and railway vehicles and create a dynamic modelling to discuss on the development process of RHSA model.

Design/methodology/approach

First, the development of RHSA dynamic model can be resolved into three stage models (an ideal one, a second one with an added accumulator and a third one that considers both accumulator and system losses) to comprehensively evaluate the RHSA's characterisation. Second, a prototype is fabricated for testing and the results meet desired agreements between simulation and measurement. Finally, the study of key parameters is carried out to investigate the influences of hydraulic-cylinder size, hydraulic-motor displacement and accumulator pre-charged pressure on the RHSA system.

Findings

The findings of sensitivity analysis indicate that the component design can satisfy the damping characteristics and power performance required for heavy-duty vehicle, freight wagon and typical passenger train. The results also show that reducing the losses is highly beneficial for saving suspension energy, improving system reliability and increasing power-conversion efficiency.

Originality/value

The paper presents a more detailed method for the development and analysis of a RHSA. Compared with the typical shock absorbers, RHSA can also recover the vibration energy dissipated by suspension.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1998

Z. Cheng, S. Gao, J. Wang, H. He, Z. Liu, M. Wu, H. Li and Q. Hu

This paper tests the eddy current analysis methods based on TEAM benchmark model, evaluates the engineering effectiveness of the eddy current codes through product‐based test…

230

Abstract

This paper tests the eddy current analysis methods based on TEAM benchmark model, evaluates the engineering effectiveness of the eddy current codes through product‐based test models, and proposes an engineering‐oriented loss solver to deal with the eddy current loss problems concerning the core tie‐plates in large power transformers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 August 2021

Zhiguang Cheng, Behzad Forghani, Zhenbin Du, Lanrong Liu, Yongjian Li, Xiaojun Zhao, Tao Liu, Linfeng Cai, Weiming Zhang, Meilin Lu, Yakun Tian and Yating Li

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside…

136

Abstract

Purpose

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside magnetic and non-magnetic components under harmonics-direct current (HDC) hybrid excitations. As a new member-set (P21e) of the testing electromagnetic analysis methods Problem 21 Family, the focus is on efficient analysis methods and accurate material property modeling under complex excitations.

Design/methodology/approach

This P21e-based benchmarking covers the design of new benchmark models with magnetic flux compensation, the establishment of a new benchmark measurement system with HDC hybrid excitation, the formulation of the testing program (such as defined Cases I–V) and the measurement and prediction of material properties under HDC hybrid excitations, to test electromagnetic analysis methods and finite element (FE) computation models and investigate the electromagnetic behavior of typical magnetic and electromagnetic shields in electrical equipment.

Findings

The updated Problem 21 Family (V.2021) can now be used to investigate and validate the total power loss and the different shielding performance of magnetic and electromagnetic shields under various HDC hybrid excitations, including the different spatial distributions of the same excitation parameters. The new member-set (P21e) with magnetic flux compensation can experimentally determine the total power loss inside the load-component, which helps to validate the numerical modeling and simulation with confidence. The additional iron loss inside the laminated sheets caused by the magnetic flux normal to the laminations must be correctly modeled and predicted during the design and analysis. It is also observed that the magnetic properties (B27R090) measured in the rolling and transverse directions with different direct current (DC) biasing magnetic field are quite different from each other.

Research limitations/implications

The future benchmarking target is to study the effects of stronger HDC hybrid excitations on the internal loss behavior and the microstructure of magnetic load components.

Originality/value

This paper proposes a new extension of Problem 21 Family (1993–2021) with the upgraded excitation, involving multi-harmonics and DC bias. The alternating current (AC) and DC excitation can be applied at the two sides of the model’s load-component to avoid the adverse impact on the AC and DC power supply and investigate the effect of different AC and DC hybrid patterns on the total loss inside the load-component. The overall effectiveness of numerical modeling and simulation is highlighted and achieved via combining the efficient electromagnetic analysis methods and solvers, the reliable material property modeling and prediction under complex excitations and the precise FE computation model using partition processing. The outcome of this project will be beneficial to large-scale and high-performance numerical modeling.

Book part
Publication date: 30 October 2023

Sohvi Heaton

Improving a startup’s ability to obtain funding is critical to the survival of the organization. Although existing studies have observed various biases in investment decisions…

Abstract

Improving a startup’s ability to obtain funding is critical to the survival of the organization. Although existing studies have observed various biases in investment decisions, few have studied the neural mechanisms behind such behavioral observations. We propose to apply cutting-edge neuroscientific techniques to uncover the neural processes engaged during pitches by entrepreneurs to investors and to use this new knowledge to identify strategy artifacts promoting pitch success. We hypothesize that pitches are dynamically shaped by covert cognitive, emotional, and social processes, which are in turn influenced by tactical approach (story-telling vs dry facts), physical context (online vs in-person), and demographics (gender, ethnicity). The role of inter-brain synchrony (i.e., correlation of cortical activity between brains) – within the startup team or between the entrepreneurs and investors – in pitch outcomes remains unknown. By uncovering the covert processes that mediate pitch outcomes, we provide an evidence-based, scientific approach to improving pitch success.

Book part
Publication date: 30 October 2023

Robin Gustafsson

Artifacts are rarely used today to visualize thoughts, insights, and ideas in strategy work. Rather, textual and verbal communication dominates. This is despite artifacts and…

Abstract

Artifacts are rarely used today to visualize thoughts, insights, and ideas in strategy work. Rather, textual and verbal communication dominates. This is despite artifacts and visual representations holding many advantages as tools to create and make sense of strategy in teamwork. To advance our understanding of the benefits of visual aids in strategy work, I synthesize insights from cognitive psychology, neuroscience, and management research. My analysis exposes distinct neurocognitive advantages concerning attention, emotion, learning, memory, intuition, and creativity from visual sense-building. These advantages increase when sense-building activities are playful and storytelling is used.

Details

Cognitive Aids in Strategy
Type: Book
ISBN: 978-1-83797-316-3

Keywords

Book part
Publication date: 11 December 2023

Beyza Hatirnaz, Dilek Demirer and Emrah Özkul

Changes and transformations experienced today have created alternative lifestyles in cities. Many life concepts try to find solutions to environmental problems, so much so that…

Abstract

Changes and transformations experienced today have created alternative lifestyles in cities. Many life concepts try to find solutions to environmental problems, so much so that this section focuses on smart eco-city concept, which is one of the trending city initiatives of the last century and is expected to become more popular each day. In the chapter, firstly, information about the concepts of eco-city and smart city is given and then what is meant by the concept of smart eco-city is discussed. Next, smart eco-cities have been tried to be explained with application examples. Finally, the chapter emphasizes the importance of ecological cities blended with technology for the sustainability of living spaces and offers implications for future research.

Article
Publication date: 25 April 2022

Xiang Zhang, Yujie Li, Menghan Li, Guorui Zhang and Xiaori Liu

This paper aims to understand the influence of cylinder liner temperature on friction power loss of piston skirts and the synergistic effect of cylinder liner temperature on…

Abstract

Purpose

This paper aims to understand the influence of cylinder liner temperature on friction power loss of piston skirts and the synergistic effect of cylinder liner temperature on lubrication and heat transfer between piston skirt and cylinder liner.

Design/methodology/approach

A method to calculate the influence of cylinder liner temperature on piston skirt lubrication is proposed. The lubrication is calculated by considering the different temperature distribution of the cylinder liner and corresponding piston temperature calculated by a new multilayer thermal resistance model. This model uses the inner surface temperature of the cylinder liner as the starting point, and the starting temperature corresponding to different positions of the piston is calculated using the time integral average. Besides, the transient heat transfer of mixed lubrication is taken into account. Six temperature distribution schemes of cylinder liner are designed.

Findings

Six temperature distributions of cylinder liner are designed, and the maximum friction loss is reduced by 34.4% compared with the original engine. The increase in temperature in the second part of the cylinder liner will lead to an increase in friction power loss. The increase of temperature in the third part of the cylinder liner will lead to a decrease in friction power loss. The influence of temperature change in the third part of the cylinder liner on friction power loss is greater than that in the second part.

Originality/value

The influence of different temperature distribution of cylinder liner on the lubrication and friction of piston skirt cylinder liner connection was simulated.

Book part
Publication date: 15 August 2024

Christian Kahl

Since the beginning of 2020, COVID-19 has dictated to the world what can be done or not. Log downs of countries, cities and businesses dominated the daily life of everybody…

Abstract

Since the beginning of 2020, COVID-19 has dictated to the world what can be done or not. Log downs of countries, cities and businesses dominated the daily life of everybody. Especially the hospitality and tourism industry went through constant changes in rules and regulations. Tourists were not sure if they were allowed to travel or have to cancel their vacations. Hotels needed to be aware of COVID-19 registration and hygiene. In China, the Zero-COVID policies were wicked, strict and specific and should support daily businesses in the country. A specially used instrument was the variety of QR codes in place to prevent virus outbreaks and monitored tourism movements. For example, the city health QR code of each city/region in China, or the travel QR code to ensure safe travel. This chapter firstly looking into the ideas and policies behind the QR code system in China and secondly discovers through examples its efficiency. The final step is to propose a universal strategy on how QR codes and their policies can support safe and healthy hospitality and tourism recovery during the current pandemic crisis and protect tourists and the hospitality and tourism industry in future pandemic situations.

Details

Tourism Policy-Making in the Context of Contested Wicked Problems: Sustainability Paradox, Climate Emergency and COVID-19
Type: Book
ISBN: 978-1-80455-453-1

Keywords

Open Access
Article
Publication date: 15 March 2024

Di Cheng, Yuqing Wen, Zhiqiang Guo, Xiaoyi Hu, Pengsong Wang and Zhikun Song

This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit (EMU).

Abstract

Purpose

This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit (EMU).

Design/methodology/approach

Using the dynamic simulation based on field test, stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested. Stiffness, damping coefficient, friction coefficient, track gauge were taken as random variables, the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.

Findings

The results showed that stiffness and damping coefficient subjected to normal distribution, the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.

Originality/value

Firstly, based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution, and the evolution law of stiffness and damping coefficient with running mileage was proposed. Secondly stiffness, damping coefficient, friction coefficient, track gauge were taken as random variables, the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 11 July 2024

Shuai Deng, Xin Cheng, Huachun Wu and Yefa Hu

The multi-objective optimization configuration strategy is proposed due to the configuration of EMAs in fault-tolerant control of active magnetic bearing with redundant…

Abstract

Purpose

The multi-objective optimization configuration strategy is proposed due to the configuration of EMAs in fault-tolerant control of active magnetic bearing with redundant electromagnetic actuators involving high-dimensional, nonlinear, conflicting goals.

Design/methodology/approach

A multi-objective optimization model for bias current coefficients is established based on the nonlinear model of active magnetic bearings with redundant electromagnetic actuators. Based on the non-dominated sorting genetic algorithm III, a numerical method is used to obtain feasible and non-inferior sets for the bias current coefficient.

Findings

(1) The conflicting relationship among the three optimization objectives was analyzed for various failure modes of EAMs. (2) For different EMAs' failure modes, the multi-objective optimization configuration strategy can simultaneously achieve the optimal or sub-optimal effective EMF, flux margins, and stability of EMF. Moreover, the characteristics of the optimal Pareto front are consistent with the physical properties of the AMB. (3) Compared with the feasible configuration of C0, the non-inferior configurations can significantly improve the performance of AMB, and the advantages of the multi-objective optimization configuration strategy become more prominent as the asymmetry of the residual supporting structure intensifies.

Originality/value

i) Considering the variation of the rotor displacement during the support reconstruction, a decision-making model that can accurately characterize the dynamic performance of AMB is presented. (ii) The interaction law between AMB and rotor under different failure modes of EMAs is analyzed, and the configuration principles for redundant EMAs are proposed. (iii) Based on the dynamic characteristics of AMB during the support reconstruction, effective EMF, energy consumption, and the Pearson correlation coefficient between the desired EMFs and the decoupled control currents are used as objective functions. iv. The NSGA-III is combined with the decision-making model to address the multi-objective optimization configuration problem of C0.

1 – 10 of over 7000